Nitrogen-14 Magnetic Resonance Studies of the Effect of Pressure on the Exchange of Ammonia in Aqueous Nickel(II)-Ammonia Solutions

RON L. BATSTONE-CUNNINGHAM, HAROLD W. DODGEN, and JOHN P. HUNT*

Received March 15, 1982

The effect of temperature and pressure on the rate of exchange of NH₁ with Ni(NH₁)₆²⁺ in 15 M aqueous NH₁ was measured by ¹⁴NH₃ NMR line broadening and shift. The pseudo-first-order rate constant for departure for a particular NH₃ from the inner sphere of Ni(NH₃)₆²⁺ was found to be $k_1(25 \text{ °C}) = 7.0 \times 10^4 \text{ s}^{-1}$ with $\Delta H^* = 13.7 \text{ kcal mol}^{-1}$, $\Delta S^* = +9.6 \text{ cal mol}^{-1}$ K⁻¹ and $\Delta V^* = +5.9 \text{ cm}^3 \text{ mol}^{-1}$. The contact coupling constant (A/h) for ¹⁴NH₃ was 15.1 MHz. A dissociativeinterchange mechanism is suggested by the results. A similarity in the transverse relaxation of ${}^{14}NH_3(aq)$ and ${}^{17}OH_2$ was observed and ascribed to similar hydrogen bond breaking and formation rates as the mechanism for relaxation.

Introduction

Swaddle¹ has described a high-pressure ¹⁴N NMR study of acetonitrile in neat acetonitrile-Ni(II) solutions. Also Merbach and co-workers² have done several pioneering studies at high pressure using ¹H NMR for nonaqueous systems including nitrogen-donor ligands and solvents.

The system Ni(II)-aqueous ammonia is of interest in comparing the neat solvent work with that for a mixed solvent. Solvation and/or outer-sphere effects should be different than in pure solvents, and some insight may be gained concerning these effects.

An early study³ was made on the Ni(II)-ammonia system using ¹⁴N NMR in aqueous and liquid ammonia in our laboratories, and it has seemed worthwhile to apply our newest techniques to this system. The main objective of the highpressure studies is, of course, to obtain mechanistic information, as le Noble,⁴ Stranks,⁵ Swaddle,⁶ and others have emphasized, by obtaining ΔV^* values.

Experimental Section

Materials. Baker Analyzed reagent ammonia (15 M) was used as well as their ammonium nitrate and zinc nitrate. The nickel nitrate was Mallinckrodt Analytical reagent grade.

NMR Measurements. These were made at 6.505 MHz with a field-locked spectrometer and procedures developed in these laboratories.⁷ Atmospheric-pressure samples were run in sealed 12-mm Pyrex tubes. The reference solutions for shifts and line broadenings were either zinc-ammonia solutions or aqueous NH₃ alone. No measurable differences were seen at the concentrations used. Spectra were taken with a frequency-swept, frequency-modulated marginal oscillator. Previously used magnetic modulation was impractical in the presence of a thick-wall pressure vessel, so frequency modulation was used. A modulation frequency of 5 kHz was used with phasesensitive detection, phased to give the center sideband. Frequency modulation was produced with a varactor in the tank circuit, and amplitude modulation was canceled by a varactor in the feedback circuit. This allowed sweeps of 10 kHz with a reasonably flat base line

For the high-pressure measurements the tank coil and a copperconstantan thermocouple were placed inside a 1-in. o.d. by 1/2-in. i.d. pressure vessel fabricated from Ti6Al-4V alloy. The electrical leads were brought out through a self-sealing plug at the bottom of the vessel. Connection to the pressurizing pump was made through the top of the vessel via a sample interchange device, which permitted interchange of the nickel-containing sample and a blank while under pressure. The interchange was accomplished by a solenoid acting on an iron armature inside the pressure system. The interchange device made

1978, 82, 333.

possible the measurement of the width and frequency of the sample and blank under identical conditions. This makes accurate shift measurements possible and provides cancellation of field inhomogeneity contributions to line width. Measurements on samples with narrow lines indicated field inhomogeneities of 3-5 Hz inside the pressure vessel. Tellus oil was used in the system, and pressures were generated with a Pressure Products Industries Model 102-60 hand pump. Pressures accurate to ± 0.4 MPa were read from a 16-in. Heise Pressure Gauge gauge attached to the system. The pressure vessel was immersed in silicone oil circulated from a thermostat.

Sample temperatures were known to about ± 0.1 K. The sample container for the high-pressure work was a thin-wall polyethylene tube 0.2-in. o.d. by 1 in. long. The center portion contained a fused-in solid polyethylene plug, and the ends were sealed with fused-on polyethylene disks. The sample was put in one end through a fine polyethylene tube, which was then heat sealed. The blank was placed in the opposite end. A movement of 3/4 in. was sufficient to interchange the sample and blank in the rf coil.

All spectra were collected in a signal averager, transferred to the memory of a microprocessor-based computer, and fitted with a digitally computed Lorentzian line shape to yield widths and center frequencies. Measurements were made at several rf levels, and widths were extrapolated to zero rf level.

Data Treatment and Results

The line width and frequency of ¹⁴NH₃ in 15 M NH₃ was measured as a function of temperature and pressure. The results are shown in Figure 1 as a plot of $\ln T_2$ vs. 1/T at 1 atm along with $\ln T_2$ vs. pressure at 30.3 and 14.6 °C. A linear least-squares fit of the pressure data with the equation $\ln T_2$ = $-P\Delta V^*/RT$ + ln T_{20} , where ΔV^* is the volume of activation for relaxation of the ¹⁴N nucleus, gave $\Delta V^* = 1.5 \pm 0.2$ and $+1.9 \pm 0.4$ cm³ mol⁻¹ at the two temperatures, respectively. The line width of ¹⁴NH₃ increased with increasing pressure as observed¹ for CH₃CN, which had a larger ΔV^* of 6.3 cm³ mol⁻¹, and was opposite to the results of ${}^{17}OH_2$, which shows² a small decrease in line width as pressure increases.

The ¹⁴NH₃ resonance frequency increases about 0.09 Hz MPa⁻¹ at the two temperatures.

The temperature dependence of T_2 for ¹⁴NH₃(aq) is remarkably similar to that¹¹ of T_1 for ¹⁷OH₂ (we assume $T_1 =$ T_2 for ¹⁴NH₃(aq)). The solid line in Figure 1 gives the T_1 values for ¹⁷OH₂ displaced downward by 1.16 units, i.e., a factor of 3.2 in T_1 . The apparent activation energy for T_2 ranges from ~ 3 to ~ 5 kcal mol⁻¹ from 100 to 0 °C and is clearly virtually identical with that of T_1 for ¹⁷OH₂ over the same temperature range. For comparison a line in Figure 1 gives T_2 for CH₃CN, and its activation energy¹ is 1.8 kcal mol^{-1} .

The atmospheric-pressure temperature dependence of line widths and shifts for Ni(II)-NH₃ solutions was measured in detail and with care. The data were treated by essentially the same method as used for the aquo-nickel system.⁷ The quantities T_{2p}^* and Q are plotted vs. 1/T on a semilog scale in Figure 2. As before, we define $T_{2p}^* \equiv [\text{Ni}]/\pi(\Delta\nu)[\text{NH}_3]$ and $\tilde{Q} \equiv TS[NH_3]/[Ni]$, where $\Delta \nu$ is the increase in the full

Yano, Y.; Fairhurst, M. T.; Swaddle, T. W. Inorg. Chem. 1980, 19, (1) 3267.

⁽²⁾ Meyer, F. K.; Newman, K. E.; Merbach, A. E. Inorg. Chem. 1979, 18, 2754.

⁽³⁾ Glaeser, H. H.; Lo, G. A.; Dodgen, H. W.; Hunt, J. P. Inorg. Chem. 1965, 4, 206.

Asano, T.; le Noble, W. T. Chem. Rev. 1978, 78, 407. Stranks, D. R. Pure Appl. Chem. 1974, 3, 303. Swaddle, T. W. Coord. Chem. Rev. 1974, 14, 217.

Bechtold, D. B.; Liu, G.; Dodgen, H. W.; Hunt, J. P. J. Phys. Chem.

Figure 1. $\ln T_2$ vs. 1/T for ¹⁴NH₃: (\bullet) 15 M NH₃; (\blacktriangle) 0.1 M Zn(NO₃)₂ in 15 M NH₃. The insert at the left shows the effect of pressure.

Figure 2. T_{2p}^* and Q vs. 1/T for the aqueous Ni(II)-NH₃ system (open symbols denote the blank solutions): (\bullet and \circ) 0.01 M Ni(II) in 15 M NH₃, 15 M NH₃ blank; (\blacktriangle and \triangle) 0.01 M Ni(II) in 15 M NH₃, 0.1 M Zn(II) in 15 M NH₃ blank; (\blacksquare and \square) 0.1 M Ni(II) in 15 M NH₃, 0.1 M Zn(II) in 15 M NH₃ blank; (\blacksquare and \square) 0.1 M Ni(II) and 1 M NH₄NO₃ in 15 M NH₃, 0.1 M Zn(II) and 1 M NH₄NO₃ in 15 M NH₃ blank (only T_{2p} shown). The small insert at the left shows pressure effects on T_{2p}^* .

line width over the blank and S is the relative shift, $\Delta \omega / \omega_0$, where ω_0 is the reference frequency. The T_{2p}^* and Q data were fitted to a complete Swift-Connick equation⁷ with use of a nonlinear least-squares program with n = 6, i.e., assuming Ni(NH₃)₆²⁺ as the only species present. The parameters from the fitting are $k_1(25 \text{ °C}) = (6.96 \pm 0.05) \times 10^4 \text{ s}^{-1}$, $\Delta H^* =$ $13.70 \pm 0.07 \text{ kcal mol}^{-1}$, $\Delta S^* = +9.6 \pm 0.2 \text{ cal mol}^{-1} \text{ K}^{-1}$, $T_{2M}(72 \text{ °C}) = (3.81 \pm 0.04) \times 10^{-6} \text{ s}$, and $E_a = -1.8 \pm 0.1$ kcal mol⁻¹ for T_{2M} . The errors given are estimates of standard deviations given by the fitting program. Also Q(lim) = 26.5 $\pm 0.07 \text{ K}$ and Q(outer sphere) = $0.057 \pm 0.004 \text{ K}$, which yield an inner-sphere contact interaction, $A/h = 15.11 \pm 0.05 \text{ MHz}$, with a spin-only value assumed for the magnetic moment of Ni(NH₃)₆²⁺.

The flat region for Q at high temperature suggests that no temperature-dependent equilibria are seriously involved, as, for example, Ni(NH₃)₆²⁺ + H₂O \rightleftharpoons Ni(H₂O)(NH₃)₅²⁺ + NH₃, which would be expected to produce a temperaturedependent Q in the fast- (high-temperature) exchange region

Table I. Kinetic Parameters for Solvent Exchange on Ni(II)

solvent	$k_1(298 \text{ K}),$	∆H [‡] , kcal mol ⁻¹	$\Delta S^{\ddagger},$ cal mol ⁻¹ K ⁻¹	$\Delta V^{\ddagger},$ cm ³ mol ⁻¹	ref
$NH_3(aq)$ H_2O DMF CH_3CN CH_3OH $NH_{(aq)^{a}}$	7.0×10^{4} 3.14×10^{4} 3.8×10^{3} 3.1×10^{3} 1.0×10^{3} 6.5×10^{3}	13.7 13.6 15.0 14.5 15.8	9.6 7.7 8.0 6.2 8.0	6 7.2 9.1 7.3 11.4	this work 7, 9 2 1 2

^a Substitution on Ni(H₂O)₆²⁺ by NH₃(aq) at 303 K. Units of k are M⁻¹ s⁻¹.

and invalidate the assumption of n = 6. Further support for the absence of any stoichiometrically significant amount of Ni(H₂O)(NH₃)₅²⁺ was obtained by measuring the shift and broadening of the ¹⁷OH₂ resonance line at natural abundance at 30.3 and 51.3 °C. The results were $T_{2p}^* = (3.1 \pm 0.9) \times$ 10^{-5} s, $Q = 0.36 \pm 0.01$ K and $T_{2p}^* = (5 \pm 2) \times 10^{-5}$ s, Q= 0.49 ± 0.01 K at the respective temperatures. We assume that water would be in the fast-exchange limit¹⁴ in Ni-(H₂O)(NH₃)₅²⁺ and conclude there is <0.1 H₂O bound per Ni in 15 M NH₃ from the observed Q values since one would expect Q > 0.4 K for 0.1 bound H₂O.⁷ A more precise value cannot be determined because of uncertainties in outer-sphere shifts for ¹⁷OH₂. The T_{2p}^* values for ¹⁷OH₂ are not inconsistent with the above conclusions but cannot be used to set limits on bound H₂O's because T_{2M} for ¹⁷OH₂ is unknown in this case.

The pressure study was done at 30.0, 20.2, and 10.0 °C on solutions containing 1 M NH₄NO₃ and 15 N NH₃. The T_{2p}^* values vs. P are plotted in Figure 2. The blank in this case contained 1 M NH_4NO_3 and showed a $\Delta V^* = 3.0 \pm 0.3$ cm³ mol^{-1} for T_2 of ¹⁴NH₃ and a frequency change with pressure of 0.11 Hz MPa⁻¹ at the above temperatures. These values are slightly different from those in the absence of NH₄NO₃ and may represent an effect of the salt on the solution structure. Previous work³ has shown that NH_4NO_3 has a negligible effect on the $Ni(NH_3)_6^{2+}-NH_3$ exchange rate, and this is confirmed by the satisfactory agreement between T_{2p}^{*} extrapolated to 1 atm from the pressure measurements and the T_{2p}^* at the corresponding temperature obtained in the 1-atm measurements on solutions that contained no NH4NO3. Since the pressure measurements were made in the Arrhenius region where $T_{2p}^* = \tau_M/n = (k_1 n)^{-1}$, a linear least-squares fit of the pressure data was made to the equation $\ln T_{2p}^* =$ $P\Delta V^*/RT + \ln T_{(2p)_0}^*$, where $\Delta V^* = 6.6 \pm 1$, 6.6 ± 0.6 , and 4.7 ± 0.7 cm³ mol⁻¹ at the respective temperatures above. The ΔV^* values seem to be reasonably independent of pressure and temperature, and the weighted average of the above values is $5.9 \pm 0.4 \text{ cm}^3 \text{ mol}^{-1}$.

The effect of pressure on the shift was small and difficult to measure. Appoximate values are $dQ/dP = -1 \times 10^{-3}$ K MPa⁻¹ at 30.0 °C and -2×10^{-4} K MPa⁻¹ at 20.2 and 10.0 °C. The larger value at 30.0 °C is expected since a small inner-sphere contribution to Q is present and it would decrease with pressure since the rate of exchange decreases with increasing pressure. The values at 10.0 and 20.2 °C represent the effect of pressure on the outer-sphere contribution to Q.

Discussion

Parameters for the present and related systems involving ligand exchange are collected in Table I. The ΔH^* value for the Ni(II)–NH₃(aq) system (13.7 kcal mol⁻¹) is near the value predicted by Jordan⁸ (14.8 kcal mol⁻¹) for the Ni(II)–NH₃(l)

⁽⁸⁾ Rusnak, L. L.; Yang, E. S.; Jordan, R. B. Inorg. Chem. 1978, 17, 1810.
(9) Ducommun, Y.; Newman, K. E.; Merbach, A. E. Inorg. Chem. 1980, 19, 3696.

Figure 3. Volume of activation for solvent molecules leaving the inner sphere of Ni(II) vs. the solvent parameter b_s .

system using a correlation, which works very well, involving crystal field and solvent effects. We had previously found that the Ni(II)-NH₃ system was quite insensitive to the amount of water present and indeed to various added salts.

The data in Table I show a remarkable similarity in view of the varied ligand properties such as size, basicity, shape, donor atom, and the mixed solvent. The ΔS^* and ΔV^* values correlate very well considering the likely errors of ca. $\pm 1-2$ units in each, all suggesting dissociative interchange as the proper description for the exchange processes. Swaddle¹ has pointed out that no correlation at all exists with molar volumes of the solvent ligands. Merbach² suggests that the faster (at 25 °C) exchanges give smaller positive ΔV^* 's, which appears to be so on the face of it, although consideration of realistic errors weakens this conclusion. A plot of ΔV^* vs. b_s is shown in Figure 3. The parameter b_s , a solvent characteristic, was derived by Jordan et al.⁸ in fitting ΔH^* to Dq for several metal-solvent pairs. The usefulness and physical meaning of b. will only be known after more systems have been studied.

The low Q(outer sphere) (0.06 K) is interesting in comparison with that number found for $Ni(H_2O)_6^{2+}$ in water (it ranges from 0.2 to 0.5 K). The inner-sphere ¹⁴N $Q(\lim)$ of

(11) Hindman, J. C.; Svirmickas, A.; Wood, M. J. Phys. Chem. 1970, 74, 1266.

26 K is very similar to the value 24 K found for ${}^{17}OH_2$ in $Ni(H_2O)_6^{2+}$; thus no special effects due to changing from NH_3 to H_2O on Ni(II) seem to be present here. On the basis of the Eigen formulation for substitution mechanisms one calculates a K_{os} (outer-sphere NH₃ complexation constant) of 0.22, which would lead to the presence of substantial NH₃ in the "outer sphere". The low Q(outer sphere), however, suggests that NH_3 is farther from the Ni(II) on the average than H_2O molecules or that K_{os} is considerably smaller than ca. 0.2 or both.

The almost identical temperature dependence of T_2 for ¹⁴NH₃ relaxation and T_1 for ¹⁷OH₂ relaxation strongly suggests that the correlation time (or times) τ_q controlling the relaxation process is the same in the two cases. For ${}^{17}OH_2$ and ${}^{14}NH_3$ quadrupolar relaxation should dominate and the fast modulation limit where $T_1 = T_2$ should exist. Using the usual equation for quadrupolar relaxation, and the quadrupole coupling constants and symmetry parameters for ice12 and solid¹³ NH₃, assuming τ_q is the same for ¹⁷OH₂ and ¹⁴NH₃, one calculates $T_1(^{17}\text{OH}_2)/T_2(^{14}\text{NH}_3) = 2.7$, which may be compared with 3.2 used in Figure 1. When one remembers that we compared ¹⁴NH₃ in 15 M NH₃ with ¹⁷OH₂ in pure H_2O , the similarity of these numbers is satisfactory and supports the idea that the mechanism for modulation of the field gradient tensor is the same for the two molecules. It has been suggested¹¹ that the mechanism involves breaking and forming hydrogen bonds at low temperatures and then approaches rotational diffusion at high temperatures. The small ΔV^* for NH₃ and H₂O as compared to that for CH₃CN is probably due to the smaller sizes of the former molecules and the open hydrogen-bonded structure of NH₃ and H₂O which would permit rotation of the molecules with little local volume change once hydrogen bonds are broken.

Acknowledgment. This work was supported by NSF Grant No. CHE-7915792.

Registry No. NH₃, 7664-41-7; Ni(NH₃)₆²⁺, 15365-74-9.

- (13)
- (14)798.

Caldin, E. F.; Grant, M. W.; Hasinoff, B. B. J. Chem. Soc., Faraday (10)Trans. 1 1972, 68, 2247

Spiess, H. W.; Garrett, B. B. Sheline, R. K.; Rabideau, S. W. J. Chem. Phys. 1969, 51, 1201. Lehrer, S. S.; O'Konski, C. T. J. Chem. Phys. 1965, 43, 1941. Desai, A. G.; Dodgen, H. W.; Hunt, J. P. J. Am. Chem. Soc. 1970, 92, (12)